1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
//! Provides types for working with request and response bodies.

use crate::util::{future::FutureExt, io::read_async};
use futures_io::AsyncRead;
use std::{
    borrow::Cow,
    fmt,
    io::{self, Cursor, Read},
    pin::Pin,
    str,
    task::{Context, Poll},
};

mod sync;

#[allow(unreachable_pub)]
pub use sync::Body;

/// Contains the body of an asynchronous HTTP request or response.
///
/// This type is used to encapsulate the underlying stream or region of memory
/// where the contents of the body are stored. An [`AsyncBody`] can be created
/// from many types of sources using the [`Into`](std::convert::Into) trait or
/// one of its constructor functions.
///
/// For asynchronous requests, you must use an asynchronous body, because the
/// entire request lifecycle is also asynchronous. You can create a body from
/// anything that implements [`AsyncRead`], which [`AsyncBody`] itself also
/// implements.
///
/// For synchronous requests, use [`Body`] instead.
pub struct AsyncBody(Inner);

/// All possible body implementations.
enum Inner {
    /// An empty body.
    Empty,

    /// A body stored in memory.
    Buffer(Cursor<Cow<'static, [u8]>>),

    /// An asynchronous reader.
    Reader(Pin<Box<dyn AsyncRead + Send + Sync>>, Option<u64>),
}

impl AsyncBody {
    /// Create a new empty body.
    ///
    /// An empty body represents the *absence* of a body, which is semantically
    /// different than the presence of a body of zero length.
    pub const fn empty() -> Self {
        Self(Inner::Empty)
    }

    /// Create a new body from a potentially static byte buffer.
    ///
    /// The body will have a known length equal to the number of bytes given.
    ///
    /// This will try to prevent a copy if the type passed in can be re-used,
    /// otherwise the buffer will be copied first. This method guarantees to not
    /// require a copy for the following types:
    ///
    /// - `&'static [u8]`
    /// - `&'static str`
    ///
    /// # Examples
    ///
    /// ```
    /// use isahc::Body;
    ///
    /// // Create a body from a static string.
    /// let body = Body::from_bytes_static("hello world");
    /// ```
    #[inline]
    pub fn from_bytes_static<B>(bytes: B) -> Self
    where
        B: AsRef<[u8]> + 'static,
    {
        castaway::match_type!(bytes, {
            Cursor<Cow<'static, [u8]>> as bytes => Self(Inner::Buffer(bytes)),
            &'static [u8] as bytes => Self::from_static_impl(bytes),
            &'static str as bytes => Self::from_static_impl(bytes.as_bytes()),
            Vec<u8> as bytes => Self::from(bytes),
            String as bytes => Self::from(bytes.into_bytes()),
            bytes => Self::from(bytes.as_ref().to_vec()),
        })
    }

    #[inline]
    fn from_static_impl(bytes: &'static [u8]) -> Self {
        Self(Inner::Buffer(Cursor::new(Cow::Borrowed(bytes))))
    }

    /// Create a streaming body that reads from the given reader.
    ///
    /// The body will have an unknown length. When used as a request body,
    /// [chunked transfer
    /// encoding](https://tools.ietf.org/html/rfc7230#section-4.1) might be used
    /// to send the request.
    pub fn from_reader<R>(read: R) -> Self
    where
        R: AsyncRead + Send + Sync + 'static,
    {
        Self(Inner::Reader(Box::pin(read), None))
    }

    /// Create a streaming body with a known length.
    ///
    /// If the size of the body is known in advance, such as with a file, then
    /// this function can be used to create a body that can determine its
    /// `Content-Length` while still reading the bytes asynchronously.
    ///
    /// Giving a value for `length` that doesn't actually match how much data
    /// the reader will produce may result in errors when sending the body in a
    /// request.
    pub fn from_reader_sized<R>(read: R, length: u64) -> Self
    where
        R: AsyncRead + Send + Sync + 'static,
    {
        Self(Inner::Reader(Box::pin(read), Some(length)))
    }

    /// Report if this body is empty.
    ///
    /// This is not necessarily the same as checking for `self.len() ==
    /// Some(0)`. Since HTTP message bodies are optional, there is a semantic
    /// difference between the absence of a body and the presence of a
    /// zero-length body. This method will only return `true` for the former.
    pub fn is_empty(&self) -> bool {
        match self.0 {
            Inner::Empty => true,
            _ => false,
        }
    }

    /// Get the size of the body, if known.
    ///
    /// The value reported by this method is used to set the `Content-Length`
    /// for outgoing requests.
    ///
    /// When coming from a response, this method will report the value of the
    /// `Content-Length` response header if present. If this method returns
    /// `None` then there's a good chance that the server used something like
    /// chunked transfer encoding to send the response body.
    ///
    /// Since the length may be determined totally separately from the actual
    /// bytes, even if a value is returned it should not be relied on as always
    /// being accurate, and should be treated as a "hint".
    pub fn len(&self) -> Option<u64> {
        match &self.0 {
            Inner::Empty => Some(0),
            Inner::Buffer(bytes) => Some(bytes.get_ref().len() as u64),
            Inner::Reader(_, len) => *len,
        }
    }

    /// If this body is repeatable, reset the body stream back to the start of
    /// the content. Returns `false` if the body cannot be reset.
    pub fn reset(&mut self) -> bool {
        match &mut self.0 {
            Inner::Empty => true,
            Inner::Buffer(cursor) => {
                cursor.set_position(0);
                true
            }
            Inner::Reader(_, _) => false,
        }
    }

    /// Turn this asynchronous body into a synchronous one. This is how the
    /// response body is implemented for the synchronous API.
    ///
    /// We do not expose this publicly because while we know that this
    /// implementation works for the bodies _we_ create, it may not work
    /// generally if the underlying reader only supports blocking under a
    /// specific runtime.
    pub(crate) fn into_sync(self) -> sync::Body {
        struct ReadSyncAdapter<T>(T);

        impl<T: AsyncRead + Unpin> Read for ReadSyncAdapter<T> {
            fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> {
                read_async(&mut self.0, buf).wait()
            }
        }

        match self.0 {
            Inner::Empty => sync::Body::empty(),
            Inner::Buffer(cursor) => sync::Body::from_bytes_static(cursor.into_inner()),
            Inner::Reader(reader, Some(len)) => {
                sync::Body::from_reader_sized(ReadSyncAdapter(reader), len)
            }
            Inner::Reader(reader, None) => sync::Body::from_reader(ReadSyncAdapter(reader)),
        }
    }
}

impl AsyncRead for AsyncBody {
    fn poll_read(
        mut self: Pin<&mut Self>,
        cx: &mut Context<'_>,
        buf: &mut [u8],
    ) -> Poll<io::Result<usize>> {
        match &mut self.0 {
            Inner::Empty => Poll::Ready(Ok(0)),
            Inner::Buffer(cursor) => Poll::Ready(cursor.read(buf)),
            Inner::Reader(read, _) => AsyncRead::poll_read(read.as_mut(), cx, buf),
        }
    }
}

impl Default for AsyncBody {
    fn default() -> Self {
        Self::empty()
    }
}

impl From<()> for AsyncBody {
    fn from(_: ()) -> Self {
        Self::empty()
    }
}

impl From<Vec<u8>> for AsyncBody {
    fn from(body: Vec<u8>) -> Self {
        Self(Inner::Buffer(Cursor::new(Cow::Owned(body))))
    }
}

impl From<&'_ [u8]> for AsyncBody {
    fn from(body: &[u8]) -> Self {
        body.to_vec().into()
    }
}

impl From<String> for AsyncBody {
    fn from(body: String) -> Self {
        body.into_bytes().into()
    }
}

impl From<&'_ str> for AsyncBody {
    fn from(body: &str) -> Self {
        body.as_bytes().into()
    }
}

impl<T: Into<Self>> From<Option<T>> for AsyncBody {
    fn from(body: Option<T>) -> Self {
        match body {
            Some(body) => body.into(),
            None => Self::empty(),
        }
    }
}

impl fmt::Debug for AsyncBody {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        match self.len() {
            Some(len) => write!(f, "AsyncBody({})", len),
            None => write!(f, "AsyncBody(?)"),
        }
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use futures_lite::{
        future::{block_on, zip},
        io::{empty, AsyncReadExt},
    };

    static_assertions::assert_impl_all!(AsyncBody: Send, Sync);

    #[test]
    fn empty_body() {
        let body = AsyncBody::empty();

        assert!(body.is_empty());
        assert_eq!(body.len(), Some(0));
    }

    #[test]
    fn zero_length_body() {
        let body = AsyncBody::from(vec![]);

        assert!(!body.is_empty());
        assert_eq!(body.len(), Some(0));
    }

    #[test]
    fn reader_with_unknown_length() {
        let body = AsyncBody::from_reader(empty());

        assert!(!body.is_empty());
        assert_eq!(body.len(), None);
    }

    #[test]
    fn reader_with_known_length() {
        let body = AsyncBody::from_reader_sized(empty(), 0);

        assert!(!body.is_empty());
        assert_eq!(body.len(), Some(0));
    }

    #[test]
    fn reset_memory_body() {
        block_on(async {
            let mut body = AsyncBody::from("hello world");
            let mut buf = String::new();

            assert_eq!(body.read_to_string(&mut buf).await.unwrap(), 11);
            assert_eq!(buf, "hello world");
            assert!(body.reset());
            buf.clear(); // read_to_string panics if the destination isn't empty
            assert_eq!(body.read_to_string(&mut buf).await.unwrap(), 11);
            assert_eq!(buf, "hello world");
        });
    }

    #[test]
    fn cannot_reset_reader() {
        let mut body = AsyncBody::from_reader(futures_lite::io::empty());

        assert!(!body.reset());
    }

    #[test]
    fn sync_memory_into_async() {
        let (body, writer) = Body::from("hello world").into_async();

        assert!(writer.is_none());
        assert_eq!(body.len(), Some(11));
    }

    #[test]
    fn sync_reader_into_async() {
        block_on(async {
            let (mut body, writer) = Body::from_reader("hello world".as_bytes()).into_async();

            assert!(writer.is_some());

            // Write from the writer concurrently as we read from the body.
            zip(
                async move {
                    writer.unwrap().write().await.unwrap();
                },
                async move {
                    let mut buf = String::new();
                    body.read_to_string(&mut buf).await.unwrap();
                    assert_eq!(buf, "hello world");
                },
            )
            .await;
        });
    }
}